Practice Exam 2
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit! On the actual exam the last page will have a list of matrices and their row reduced echelon or row echelon forms that you may or may not need.

1. Let

$$
C^{1}(\mathbb{R})=\left\{f(x): f^{\prime}(x) \text { exists and is continuous }\right\}
$$

Show that $C^{1}(\mathbb{R})$ is a subspace of $C(\mathbb{R})$, the set of all continuous functions on the real line under the usual addition of functions and scalar multiplication.
2. Let

$$
C_{a}[a, b]=\{f(x): f(a)=0\}
$$

Show that $C_{a}[a, b]$ is a subspace of $C[a, b]$, the set of all continuous functions on the interval $[a, b]$ under the usual addition of functions and scalar multiplication.
3. Let

$$
S=\left\{t^{2}+1, t^{2}+t, t+1\right\}
$$

Determine if the following set is a basis for P_{2}, the set of all polynomials of degree 2 or less.
4. Let

$$
S=\left\{2 t^{2}+1,3 t^{2}-4 t, 4 t+9\right\}
$$

Determine if the following set is a basis for P_{2}, the set of all polynomials of degree 2 or less.
5. Let $T: P_{2} \rightarrow \mathbb{R}$ be a linear transformation defined by:

$$
T(p(t))=\int_{0}^{1}\left(a_{0}+a_{1} t+a_{2} t^{2}\right) d t
$$

Compute $\operatorname{Ker}(T)$.
6. Let $T: P_{2} \rightarrow P_{1}$ be a linear transformation defined by:

$$
T(p(t))=\frac{d}{d t}\left(a_{0}+a_{1} t+a_{2} t^{2}\right)
$$

Compute $\operatorname{Ker}(T)$.
7. Let A be an 10×10 matrix and let $d=\operatorname{dim} \operatorname{Ker}(A)$. Suppose d solves the following quadratic equation:

$$
d^{2}-9 d=0
$$

What are the possible dimensions of the columnspace to A ? In either case is A invertible? (HINT: You will need the rank-nullity theorem)
8. Let A be an $m \times n$ matrix. Let $A^{t} A$ be nonsingular. Show that $\operatorname{rk}(A)=n$. (HINT: You will need the rank-nullity theorem)
9. Use determinants to determine if the following matrix is invertible:

$$
A=\left(\begin{array}{lll}
2 & 6 & 0 \\
1 & 3 & 2 \\
3 & 9 & 2
\end{array}\right)
$$

10. Use determinants to determine if the following matrix is invertible:

$$
A=\left(\begin{array}{lll}
2 & 2 & 2 \\
4 & 4 & 4 \\
8 & 8 & 8
\end{array}\right)
$$

11. Suppose A is a square matrix such that $\operatorname{det}\left(A^{3}\right)=0$. Prove that A cannot be invertible.
12. Let A and P be square matrices with P invertible. Show that $\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det}(A)$.
13. Let A be an $n \times n$ matrix. Suppose there is no nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$, such that $A \mathbf{x}=\mathbf{x}$. Show that $A-I_{n}$ is nonsingular. (HINT: You will need the rank-nullity theorem.)
